Answer:
|
|
Let (x2 +
x) = m
|
|
|
|
∴ m(m – 2) = 24
|
|
∴ m2 – 2m = 24
|
|
∴ m2 - 2m - 24 = 0
|
|
∴ m2 – 6m + 4m – 24 = 0
|
|
∴ m(m – 6) + 4( m – 6 ) = 0
|
|
∴ (m – 6) (m + 4 ) = 0
|
|
∴ m – 6 = 0
|
∴ m + 4 = 0
|
∴ m = 6
|
∴ m = - 4
|
Re substituting m = (x2
+ x)
|
|
|
|
∴ x2 + x = 6
|
∴ x2 + x = - 4
|
|
|
∴ x2 + x – 6 = 0
|
∴ x 2 + x + 4 = 0
|
|
|
∴ x2 + 3x – 2x – 6 = 0
|
Here, a = 1 , b = 1, c = 4
|
|
|
∴ x(x + 3) – 2(x + 3) = 0
|
∴ b2 – 4ac = 12 – 4 (1) (4)
|
|
|
∴ (x + 3 ) ( x – 2 ) = 0
|
∴ b2 – 4ac = - 15
|
|
|
∴ x + 3 = 0 OR x – 2 = 0
|
∴ b2 – 4ac < 0
|
|
|
∴ x = - 3 OR x =
2
|
∴ the roots are not real but imaginary numbers
|
|
|
|
∴ we can avoid this equation
|