Given: In ∆ PQR, Line MN || side
QR,
T o Prove:
|
PM
|
=
|
PN
|
|
MQ
|
|
NR
|
Construction: Draw seg QN and seg RM.
Solution: ∆ PMN and ∆ QMN have equal heights with common
vertex N
|
||||||||||||||||
|
||||||||||||||||
Similarly, ∆ PMN and ∆ RMN have equal height with common
vertex M.
|
||||||||||||||||
|
||||||||||||||||
Now, A (∆ QMN) = A(∆ RMN)
----------------------- eq. no. (3)
[ ∵ Both
the triangles are between two Parallel Lines and their bases is common]
|
||||||||||||||||
|