In the figure, if LK = 6√3 , MK = 12, find the remaining sides of □LMNK and also perimeter of □ LMNK.
Solution:
|
||
In ∆ MLK, m∠ L = 900 , m∠ K = 300
|
||
∴ m∠ M = 600 [Remaining angle
of a triangle]
|
||
∴ ∆ MLK, is a 300 – 600
– 900 triangle
|
||
Now, Side opposite to
300 = 1/2
[Hyp]
|
||
∴ ML = ½ [MK]
|
||
∴ ML = ½ [12]
|
||
∴ ML = 6 cm
|
||
Now, in ∆ MNK, ∠ N = 450 , ∠ K = 900 [Given]
|
||
∴ ∠ M = 450 [Remaining angle
of a triangle]
|
||
∴ MNK, is a 450 , 45‑0,
900 triangle
|
||
∴ side opposite to 450 = 1/√2 [Hyp]
|
||
∴ MK = KN = 1/√2 [MN]
|
||
∴ 12 = KN = 1/√2 [MN]
|
||
∴ KN = 12
|
&
|
12 = 1/√2 [MN]
|
&
|
12√2 = MN
|
|
P(□ LMNK) = LM + MN + NK + LK
|
||
∴ P(□ LMNK) = 6 + 12√2 +12 + 6√3
|
||
∴ P(□ LMNK) = 18 + 12√2 + 6√3
|
||
∴ P(□ LMNK) = 6(3 + 2√2 +√3) cm
|