Advertisement

The ratio of areas of two similar triangles is equal to the square of the ratio of their corresponding sides.





Given: ∆ ABC ∆ PQR
To Prove:
A(∆ ABC)
=
AB2
=
BC2
=
AC2



A(∆ PQR)

PQ2

QR2

PR2



Construction: Draw seg AM  ┴ side BC and seg PN ┴ side QR.


Solution .  ∆ ABC ∆ PQR
AB
=
BC
=
AC

[C.S.S.T.]--------------------eq. (1)

PQ

QR

PR



and ABC PQR       [c.a.s.t.]
i.e.   ABM PQN     ---------------------eq. (2)
 [Same angle with different Names]


In ∆ ABM and ∆ PQN,
ABM PQN        [From (2) ]
AMB PNQ  (Both are 900)
∆ AMB ∆ PNQ
AM
=
MB
=
AB

--------------------eq. (3)

PN

NQ

PQ




Now,
A(∆ ABC)
=
½ (Base)(Height)





A(∆ PQR)

½ (Base)(Height)












A(∆ ABC)
=
BC × AM





A(∆ PQR)

QR × PN












A(∆ ABC)
=
AB × AB


[From eq. (1) and (3)]


A(∆ PQR)

PQ × PQ