Advertisement

2y2 + 15/y2 = 12

(viii) 2y2 + 15/y2 = 12

Sol.  2y2 + 15/y2 = 12

Multiplying by y2 , we get

2y4 + 15 = 12y2

∴ 2 (y2)2 – 12y2 + 15 = 0

[ ∵ (am)n = am× n]

Substituting y2 = m we get,

2m2 – 12m + 15 = 0

Comparing with am2 + bm + c = 0 we a = 2, b = – 12, c = 15

b2 – 4ac = (– 12)2 – 4 (2) (15)

= 144 – 120

= 24

By Formula method,
m
=
-  b ± √(b2 – 4ac)




2a







∴ m
=
-(- 12)± √24




2(2)







∴ m
=
12 ± 2√6




2







∴ m
=
2(6±√6)




2







∴ xm
=
6±√6




2







∴ m
=
6+√6
or
6 - √6


2

2



Resubstituting m = y2 we get,

y2 = 6+√6/2   or  y2  =  6 - √6 /2   



∴ y = ±√(6+√6/2)    or   y = ±√(6 - √6 /2)