(viii) 2y2 + 15/y2
= 12
Sol. 2y2 + 15/y2
= 12
Multiplying by y2
, we get
2y4 + 15 = 12y2
∴ 2 (y2)2
– 12y2 + 15 = 0
[ ∵ (am)n =
am× n]
Substituting y2
= m we get,
2m2 – 12m
+ 15 = 0
Comparing with am2
+ bm + c = 0 we a = 2, b = – 12, c = 15
b2 – 4ac =
(– 12)2 – 4 (2) (15)
= 144 – 120
= 24
By Formula
method,
m
|
=
|
- b ± √(b2 – 4ac)
|
|
|
|
|
2a
|
|
|
|
|
|
|
|
∴ m
|
=
|
-(- 12)± √24
|
|
|
|
|
2(2)
|
|
|
|
|
|
|
|
∴ m
|
=
|
12 ± 2√6
|
|
|
|
|
2
|
|
|
|
|
|
|
|
∴ m
|
=
|
2(6±√6)
|
|
|
|
|
2
|
|
|
|
|
|
|
|
∴ xm
|
=
|
6±√6
|
|
|
|
|
2
|
|
|
|
|
|
|
|
∴ m
|
=
|
6+√6
|
or
|
6 - √6
|
|
|
2
|
|
2
|
Resubstituting m = y2
we get,
y2 = 6+√6/2
or y2 = 6 - √6 /2
∴ y = ±√(6+√6/2) or y = ±√(6 - √6 /2)