Advertisement

3 – 2√ 5

(i) 3 – 2√ 5

Sol. If one of the root of the quadratic equation is 3 – 2√5 ,

then the other root is 3 + 2√ 5

Let α= 3 – 2√ 5 and β  = 3 + 2√ 5

∴ α + β  = 3 – 2√ 5 + 3 + 2√ 5 = 6

and  α β  =  (3 – 2√ 5) × (3 + 2√ 5)

= (3)2  –  (2√ 5)2

= 9 – 4 × 5

= 9 – 20

= – 11

We know that, Quadratic equation is given by,

x2 – (Sum of the roots)x + Product of the roots = 0

∴ x2 –( α  + β)x + αβ = 0

x2 – (6)x + (-11) = 0

 x2 -  6x  - 11  = 0


 The required quadratic equation is  x2 -  6x  - 11  = 0