Advertisement

(x2 + x) (x2 + x – 7) + 10 = 0

(vi) (x2 + x) (x2 + x – 7) + 10 = 0



Sol. (x2 + x) (x2 + x – 7) + 10 = 0

Substituting x2 + x = m we get,

m (m – 7) + 10 = 0

 m2 – 7m + 10 = 0

 m2 – 5m – 2m + 10 = 0

 m (m – 5) – 2 (m – 5) = 0

 (m – 5) (m – 2) = 0

∴  m – 5 = 0 or m – 2 = 0

∴  m = 5 or m = 2

Resubstituting m = x2 + x we get,

x2 + x = 5 ...... (i)  or x2 + x = 2 ....... (ii)

From (i)

x2 + x = 5

∴ x2 + x – 5 = 0

Comparing with ax2 + bx + c = 0 we have a = 1, b = 1, c = – 5

 b2 – 4ac = (1)2 – 4(1) (– 5)

= 1 + 20

= 21


By Formula method,
x
=
-  b ± √(b2 – 4ac)




2a







∴ x
=
-(1)± √21




2(1)







∴ x
=
-1 ± √21




2







∴ x
=
-1+√21
or
-1-√21


2

2


From (ii)

x2 + x = 2

∴ x2 + x – 2 = 0

∴ x2 + 2x – 1x – 2 = 0

∴x (x + 2) – 1(x + 2) = 0

∴ (x + 2) (x – 1) = 0

∴x + 2 = 0 or x – 1 = 0


∴x = – 2 or x = 1


∴ x
=
-1+√21
or
-1-√21
or
-2
or
1


2

2