Advertisement

4. If tan θ = 1, then find the value of (sinθ + cos θ) ÷ (secθ + cosecθ ), where θ is an acute angle.



Sol. tan θ  = 1
But we know that, tanθ = y/x = 1/1
y = 1 and x = 1
r = √(x2+y2 )
∴ r =√((1)2+(1)2 )
∴ r =√(1+1)
∴ r =√2

Now,
sinθ = y/r = 1/√2
cosθ = x/r = 1/√2
sec θ = r/x = √2
cosec θ = r/y = √2


(sinθ  + cos θ) ÷  (secθ  + cosecθ ) = (1/√2 + 1√2) ÷ (√2 + √2)
 (sinθ  + cos θ) ÷  (secθ  + cosecθ ) =(1+1)/√2 ÷ 2√2
(sinθ  + cos θ) ÷  (secθ  + cosecθ ) = 2/√2 / 2√2
(sinθ  + cos θ) ÷  (secθ  + cosecθ ) = 2/4

(sinθ  + cos θ) ÷  (secθ  + cosecθ ) = 1/2