If a secant and a tangent of a circle intersect in a point outside the circle then the area of the rectangle formed by the two line segments corresponding to the secant is equal to the area of the square formed by line segment corresponding the tangent.
Given. PT is the tangent and
PAB is a secant.
To Prove: PT2 = PA × PB
Construction: Draw seg BT and
AT
Solution:
|
||||||||||||||||||
In
∆ PTA and ∆ PBT
|
||||||||||||||||||
∠ PTA ≅ ∠ PBT [Angles in alternate segment]
|
||||||||||||||||||
∠ TPA ≅ ∠ TPB [Common
angle]
|
||||||||||||||||||
∴ ∆PTA ∼ ∆ PBT [A – A test for
similarity]
|
||||||||||||||||||
|
||||||||||||||||||
|
||||||||||||||||||
|
||||||||||||||||||
|
||||||||||||||||||
∴ PT2 = PA × PB
|
||||||||||||||||||
|
||||||||||||||||||
Hence
Proved.
|