Solution.
8 sin x – cos x = 4 [Given]
∴ 8 sin x – 4 = cos x ..... (i)
∴ sin2 x + cos2 x = 1
∴ sin2 x + (8 sin x – 4)2 = 1 [from (i)
∴ sin2 x + 64 sin2 x – 64 sin x + 16 = 1
∴ sin2 x + 64 sin2 x – 64 sin x + 16 – 1 =
0
∴ 65 sin2 x – 64 sin x + 15 = 0
∴ 65 sin2 x – 39 sin x – 25 sin x + 15 = 0
∴ 13 sin x (5 sin x – 3) – 5 (5 sin x – 3) = 0
∴ (5 sin x – 3) (13 sin x – 5) = 0
∴ 5 sin x – 3 = 0 or 13 sin x – 5 = 0
∴ 5 sin x = 3 or 13 sin x = 5
∴ sin x = 3/5
or sin x = 5/13