Advertisement

6. Find the possible values of sin x if 8 sin x – cos x = 4.



Solution.

8 sin x – cos x = 4 [Given]

8 sin x – 4 = cos x ..... (i)

sin2 x + cos2 x = 1

sin2 x + (8 sin x – 4)2 = 1 [from (i)

sin2 x + 64 sin2 x – 64 sin x + 16 = 1

sin2 x + 64 sin2 x – 64 sin x + 16 – 1 = 0

65 sin2 x – 64 sin x + 15 = 0

65 sin2 x – 39 sin x – 25 sin x + 15 = 0

13 sin x (5 sin x – 3) – 5 (5 sin x – 3) = 0

(5 sin x – 3) (13 sin x – 5) = 0

5 sin x – 3 = 0 or 13 sin x – 5 = 0

5 sin x = 3 or 13 sin x = 5


∴ sin x = 3/5  or   sin x = 5/13