Advertisement

Electromagnetic Waves Class 12th Physics Part I CBSE Solution

Class 12th Physics Part I CBSE Solution
Exercises
  1. Figure 8.6 shows a capacitor made of two circular plates each of radius 12 cm, and…
  2. A parallel plate capacitor (Fig. 8.7) made of circular plates each of radius R = 6.0 cm…
  3. What physical quantity is the same for X-rays of wavelength 10-10 m, red light of…
  4. A plane electromagnetic wave travels in vacuum along z-direction. What can you say about…
  5. A radio can tune in to any station in the 7.5 MHz to 12 MHz band. What is the…
  6. A charged particle oscillates about its mean equilibrium position with a frequency of 10^9…
  7. The amplitude of the magnetic field part of a harmonic electromagnetic wave in vacuum is…
  8. Suppose that the electric field amplitude of an electromagnetic wave is E0 = 120 N/C and…
  9. The terminology of different parts of the electromagnetic spectrum is given in the text.…
  10. In a plane electromagnetic wave, the electric field oscillates sinusoidally at a frequency…
Additional Exercises
  1. Suppose that the electric field part of an electromagnetic wave in vacuum is (a) What is…
  2. About 5% of the power of a 100 W light bulb is converted to visible radiation. What is the…
  3. Use the formula λmT = 0.29 cm K to obtain the characteristic temperature ranges for…
  4. Given below are some famous numbers associated with electromagnetic radiations in…
  5. Long distance radio broadcasts use short-wave bands. Why? Answer the following question:…
  6. It is necessary to use satellites for long distance TV transmission. Why? Answer the…
  7. Optical and radio telescopes are built on the ground but X-ray astronomy is possible only…
  8. The small ozone layer on top of the stratosphere is crucial for human survival. Why?…
  9. If the earth did not have an atmosphere, would its average surface temperature be higher…
  10. Some scientists have predicted that a global nuclear war on the earth would be followed by…

Exercises
Question 1.

Figure 8.6 shows a capacitor made of two circular plates each of radius 12 cm, and separated by 5.0 cm. The capacitor is being charged by an external source (not shown in the figure). The charging current is constant and equal to 0.15A.

(a) Calculate the capacitance and the rate of change of potential difference between the plates.

(b) Obtain the displacement current across the plates.

(c) Is Kirchhoff’s first rule (junction rule) valid at each plate of the capacitor? Explain.



Answer:

Given: Radius of circular plates, r = 12 cm = 0.12 m

Distance between the circular plates, d = 5.0 cm = 0.05 m


Current, I = 0.15 A


(a) Capacitance between the circular plates is given by the following expression:



Where A is the area of plate and is given by the relation: A = π r2


And Absolute permittivity ϵ0 = 8.854 ×10-12 C2N-1m-2


Now putting the values in above relation


⇒ 




⇒ C = 8.0032 ×10-12 F


Rate of change of potential difference between the plates can be calculated as follows:


We know that charge on each plate can be find out using the following expression:


q = CV .... (i)


where C is the capacitance between the two plates


V is the potential difference between the plates


Capacitance between the two plates C = 8.0032 ×10-12 F


Converting in pF, we get C = 80.032 pF


Now differentiating equation (i) w.r.t time



Since 


⇒ 



⇒ 


(b) The displacement current will be equal to the conduction current across the plates. Therefore, displacement current Id = Ic = 0.15 A.


(c) If we take the total current as sum of conduction current and displacement current then the Kirchhoff’s first rule is valid at each plate of the capacitor.



Question 2.

A parallel plate capacitor (Fig. 8.7) made of circular plates each of radius R = 6.0 cm has a capacitance C = 100 pF. The capacitor is connected to a 230 V ac supply with a (angular) frequency of 300 rad s–1.

(a) What is the rms value of the conduction current?

(b) Is the conduction current equal to the displacement current?

(c) Determine the amplitude of B at a point 3.0 cm from the axis between the plates.



Answer:

Given: Radius of circular plates R = 6.0 cm = 0.06 m

Capacitance C = 100 pF = 100 × 10-12 F


Voltage V = 230 V


Angular frequency, ω = 300 rad s-1


The figure is:



(a) The root mean square value of the conduction current is given by the following relation:


Irms = V/Xc


Where Irms is the root mean square value of the conduction current


V is the voltage


Xc is the capacitive reactance and is given by Xc = 1/ωc


⇒ Ir. m. s = V × ωC


Substituting the values we get


Irms = 230 V×300 rad s-1×100×10-12F


Irms = 6.9 × 10-6A= 6.9 μ A


(b) Yes, the conduction current is equal to the displacement current.


(c) Amplitude of magnetic field B at a point 3.0 cm from the axis between the plates is given by the following expression:



Distance between the two plates = 3.0 cm = 0.03 m


μ0 is the free space permeability and is equal to 4π×10-7NA-2


I0 is equal to the maximum value of current i.e. √2I




On calculating, we get 162.63


⇒ B = 166 × 10-11 T



Question 3.

What physical quantity is the same for X-rays of wavelength 10–10 m, red light of wavelength 6800 Å and radio waves of wavelength 500m?


Answer:

The physical quantity which is same for X-rays of wavelength 10–10 m, red light of wavelength 6800 Å and radio waves of wavelength 500 m is the speed of light in vacuum which is equal to 3×108 m/s. The speed of light in vacuum remains same for all wavelengths. This is because speed of light is independent of wavelength in the vacuum.



Question 4.

A plane electromagnetic wave travels in vacuum along z-direction. What can you say about the directions of its electric and magnetic field vectors? If the frequency of the wave is 30 MHz, what is its wavelength?


Answer:

Given: The electromagnetic wave travels in vacuum along z-direction

The direction of electric field vector and magnetic field vector will be in XY plane.


Frequency of the wave = 30 MHz


Converting into Hz, v = 30× 106 Hz.


Wavelength of the wave can be calculated using the following relation:


λ = c/v


⇒ 


⇒λ = 10 m



Question 5.

A radio can tune in to any station in the 7.5 MHz to 12 MHz band. What is the corresponding wavelength band?


Answer:

Given: Minimum frequency v1 = 7.5 MHz

In Hz, v1 = 7.5 × 106 Hz


Maximum frequency v2 = 12 MHz


In Hz, v2 = 12 ×106 Hz


Speed of light c = 3 × 108 m/s


Now wavelength for frequency v1 = 7.5 MHz is given by the following relation:


λ 1 = c/v1




⇒ λ1 = 40 m


The wavelength for frequency v2 = 12 MHz is given by the following relation:


λ2 = c/v2




λ 2 = 25m


∴ the range is 20 m to 40 m.



Question 6.

A charged particle oscillates about its mean equilibrium position with a frequency of 109 Hz. What is the frequency of the electromagnetic waves produced by the oscillator?


Answer:

The frequency of the electromagnetic waves produced by the oscillator is 109 Hz. This is because the frequency of the electromagnetic waves produced by the oscillator is equal to the frequency of the electromagnetic waves produced by the oscillator.



Question 7.

The amplitude of the magnetic field part of a harmonic electromagnetic wave in vacuum is B0 = 510 nT. What is the amplitude of the electric field part of the wave?


Answer:

Given: Amplitude of magnetic field part of harmonic electromagnetic wave, B0 = 510 nT

Converting into Tesla, B0 = 510 × 10-9 T


Speed of light in vacuum, c = 3 × 108 m/s


Amplitude of the electric field part of the wave can be calculated by the following expression:


E = c B0


E = 3× 108ms-1 ×510 × 10-9 T


⇒ E = 153 N/C



Question 8.

Suppose that the electric field amplitude of an electromagnetic wave is E0 = 120 N/C and that its frequency is ν = 50.0 MHz. (a) Determine, B0, ω, k, and λ. (b) Find expressions for E and B.


Answer:

Given: Electric field amplitude of electromagnetic wave, E0 = 120 N/C

Frequency of electromagnetic wave, v = 50 MHz


(a) Magnitude of magnetic field is given by the following expression:


B0 = E0/c



⇒ B0 = 40 × 10-8 T


Converting it into nT, we get B0 = 400 nT


Angular frequency can be calculated as follows:


ω = 2πv


where ν is the linear frequency.


ω = 2×3.14×50×106Hz


ω = 314 × 106 rad/s


ω = 3.14 × 108 rad/s


Propagation constant k is given by the following expression:


k = ω /c



K = 1.05 rad/m


Wavelength can be calculated by the following expression:


λ = c/v



⇒ λ = 6 m


(b) The expression for electric field and magnetic field can be written as follows:


Let a wave is propagating in positive x- direction.


Since all the three vectors are mutually perpendicular to each other. The electric field vector will be in positive y- direction and magnetic field vector will be in positive z-direction.


Electric field vector can be expressed in the form of equation as given below:


⇒ 


Substituting values in above equation we get


⇒ 


Magnetic field vector can be expressed in form of following equation:


⇒ 


Substituting values in above equation we get


⇒ 



Question 9.

The terminology of different parts of the electromagnetic spectrum is given in the text. Use the formula E = hν (for energy of a quantum of radiation: photon) and obtain the photon energy in units of eV for different parts of the electromagnetic spectrum. In what way are the different scales of photon energies that you obtain related to the sources of electromagnetic radiation?


Answer:

The energy of a photon E = hv

Where v is the frequency of the wave.


And, h is planck’s constant = 6.626×10-34J-sec


v is given by the relation v = c/λ,


where c is the velocity of light = 3×108 m/sec


Putting in above formula


E = hc/λ



In electron volts,


 eV


 eV


⇒ eV


The different scales of photon energies obtained are related to the sources of electromagnetic radiation as the different photon energies of the spectrum shows the spacing between the energy levels of the source.



Question 10.

In a plane electromagnetic wave, the electric field oscillates sinusoidally at a frequency of 2.0 × 1010 Hz and amplitude 48 V m–1.

(a) What is the wavelength of the wave?

(b) What is the amplitude of the oscillating magnetic field?

(c) Show that the average energy density of the E field equals the average energy density of the B field. [c = 3 × 108 m s–1.]


Answer:

Given: Frequency of electromagnetic wave f = 2.0×1010 Hz

Amplitude of the electromagnetic wave i.e. E0 = 48 V m–1


(a) Wavelength of the electromagnetic wave can be calculated as follows:


v = c / λ


also, λ = c/v


where c is the speed of light in vacuum


v is the frequency of electromagnetic wave


and λ is the wavelength of electromagnetic wave


Substituting the values



On calculating, we get


⇒ λ = 0.015 m


(b) Amplitude of the electromagnetic wave i.e. E0 = 48 V m–1


Amplitude of the oscillating magnetic field is given by the following expression:


B0 = E0/c



On calculating we get:


⇒ B0 = 1.6 × 10-7 Tesla


(c) The average energy density of the E field equals the average energy density of the B field can be proved as follows:


The energy density of electric field  (i)


Where is the permittivity of free space


The energy density of magnetic field is given as follows:


......................(ii)


Where is the permeability of free space


The relation between Electric field and magnetic field i.e. E and B is as follows:



On squaring both the sides, we get following relation



Or, 



From equation (i) and (ii), we get


∴ UE = UB




Additional Exercises
Question 1.

Suppose that the electric field part of an electromagnetic wave in vacuum is 

(a) What is the direction of propagation?

(b) What is the wavelength λ?

(c) What is the frequency ν?

(d) What is the amplitude of the magnetic field part of the wave?

(a) Write an expression for the magnetic field part of the wave.


Answer:

(a) Given: E = {(3.1 N/C) cos [(1.8 rad/m) y + (5.4 × 106 rad/s)t]}


As it is clear from the above electric field vector, that electric field is in the negative x direction. Therefore, the direction of propagation of the vector will be in negative y-direction i.e. –j.


(b) As we know that the general equation for electric field vector in the positive x-direction is:


..........(i)


The electric field part of an electromagnetic wave in vacuum is


E = {(3.1 N/C) cos [(1.8 rad /m) y + (5.4 × 106 rad/s)t..............(ii)


Comparing equation (i) and (ii), we get


E0 = 3.1 N


(c) Angular frequency ω = 5.4 × 106 rad/s


Wave number i.e. k = 1.8 rad/m


Wavelength of the wave can be calculated as follows:


λ = 2π/k




(d) Angular frequency of the wave can be expressed as follows:


ω = 2π v


⇒ 5.4 × 106 = 2 × 3.14 × v


⇒ 


⇒ 


⇒ V = 0.86 × 106 Hz


(e) Magnetic field strength can be calculated as follows:


B0 = E0/c


⇒ 


⇒ B0 = 1.03 × 10-7 T


(f) Since magnetic field vector is in the negative z-direction, the general equation for magnetic field vector can be written as follows:


The expression for the magnetic field part of the wave can be written as follows:


B = B0 cos (ky + wt) k


B = {1.03 × 10-7 cos [(1.8 rad/m)y + (5.4 × 106 rad/s)t]}k



Question 2.

About 5% of the power of a 100 W light bulb is converted to visible radiation. What is the average intensity of visible radiation

(a) at a distance of 1m from the bulb?

(b) at a distance of 10 m?

Assume that the radiation is emitted isotropically and neglect reflection.


Answer:

(a) Given : Power of the bulb = 100 W

Since, 5% of the power of a 100 W light bulb is converted to visible radiation, therefore the power of visible radiation can be calculated as follows:



P’ = 5W


The average intensity of visible radiation at a distance of 1m from the bulb can be calculated by using the following formula:



⇒ 


⇒ 


⇒ I = 0.398 W/m2


(b) The average intensity of visible radiation at a distance of 10 m from the bulb can be calculated by using the following formula:


I = P’/4π d2


I = 


I = 5/1256


I = 0.00398 W/m2



Question 3.

Use the formula λmT = 0.29 cm K to obtain the characteristic temperature ranges for different parts of the electromagnetic spectrum. What do the numbers that you obtain tell you?


Answer:

According to the planck’s law of radiation:

λm T = 0.29 cm K


or λm = 0.29/T cm K


where T is the temperature and λm is the maximum wavelength of the wave


for different values of maximum wavelengths such as λm = 10-4 cm, 5 × 10-5 cm and 10-6 cm, the values for temperatures can be calculated as follows:


T = 0.29/λm cm K


When, λm = 10-4 cm


T = 0.29/10-4 cm K


T = 2900 K


When, λm = 5× 10-5 cm


T =  cm K


T = 5800 K


When, λm = 10-6 cm


T = 0.29/10-6 cm K


T = 290000 K


The above data shows that temperature is required to get radiations of different parts of electromagnetic spectrum and the temperature increases with decrease in the wavelength.



Question 4.

Given below are some famous numbers associated with electromagnetic radiations in different contexts in physics. State the part of the electromagnetic spectrum to which each belongs.

(a) 21 cm (wavelength emitted by atomic hydrogen in interstellar space).

(b) 1057 MHz (frequency of radiation arising from two close energy levels in hydrogen; known as Lamb shift).

(c) 2.7 K [temperature associated with the isotropic radiation filling all space-thought to be a relic of the ‘big-bang’ origin of the universe].

(d) 5890 Å - 5896 Å [double lines of sodium]

(e) 14.4 keV [energy of a particular transition in 57Fe nucleus associated with a famous high resolution spectroscopic method (Mössbauer spectroscopy)].


Answer:

(a) The wavelength emitted by atomic hydrogen in interstellar space i.e. 21 cm is the radio waves as radio waves are shortest in wavelength of the electromagnetic spectrum.


(b) The frequency of radiation arising from the two close energy levels in hydrogen known as Lamb shift i.e. 1057 MHz is radio waves as it belongs to the short wavelength end of the electromagnetic spectrum.


(c) Given: Temperature = 2.7 K


λm = 0.29/T cm K


putting the value of temperature in above equation


λm = 0.29/2.7 cm K


λm = 0.11 cm


The above wavelength belongs to the microwaves of the electromagnetic spectrum.


(d) 5890 Å - 5896 Å [double lines of sodium] belongs to the yellow light of the visible spectrum of electromagnetic waves.


(e) Given: Energy E = 14.4 keV


Energy is given by the relation E = hv


h = 6.6 × 10-34 Js


v = E/h



⇒ 4 × 1018 Hz


the electromagnetic spectrum belongs to X-rays.



Question 5.

Answer the following question:

Long distance radio broadcasts use short-wave bands. Why?


Answer:

Long distance radio broadcasts use short-wave bands because ionosphere refracts only shortwave bands and long wave bands are not refracted by the ionosphere.



Question 6.

Answer the following question:

It is necessary to use satellites for long distance TV transmission. Why?


Answer:

Satellites are used for long distance T.V. transmission because due to the high frequencies of the T.V. signals and high energy of the TV signals, they can’t be reflected by the ionosphere. Due to which satellites are required for reflecting the T.V. signals by the ionosphere.



Question 7.

Answer the following question:

Optical and radio telescopes are built on the ground but X-ray astronomy is possible only from satellites orbiting the earth. Why?


Answer:

Optical and radio-telescopes are built on the ground because atmosphere can absorb the X-rays but visible and radio-waves are not absorbed by the atmosphere and they can penetrate through it. That’s why Optical and radio telescopes are built on the ground but X-ray astronomy is possible only from satellites orbiting the earth.



Question 8.

Answer the following question:

The small ozone layer on top of the stratosphere is crucial for human survival. Why?


Answer:

The small ozone layer on top of the stratosphere is crucial for human survival because ozone layer present on top of the stratosphere helps in preventing the harmful UV radiation from reaching the Earth’s surface and absorbs it. If it reaches the Earth’s surface it can cause many serious harms to the people.



Question 9.

Answer the following question:

If the earth did not have an atmosphere, would its average surface temperature be higher or lower than what it is now?


Answer:

When there will be no atmosphere on surface of Earth, then there will be no green house effect which will led to decrease in the temperature. The decrease in temperature will result in making the environment cool and it will be difficult to survive by human.



Question 10.

Answer the following question:

Some scientists have predicted that a global nuclear war on the earth would be followed by a severe ‘nuclear winter’ with a devastating effect on life on earth. What might be the basis of this prediction?


Answer:

The environmental condition post nuclear war will be very worst. The war will result in formation of clouds in the sky all over resulting in the extreme winter conditions. It will prevent sunlight to reach the Earth’s surface and the Ozone layer will also gets depleted.


Kids Worksheets

 

English 

Handwriting practice sheets

Cursive Writing – Small Letters

Alphabet Practice

Alphabet Tracing

Tracing

Trace the Path

Positions

Sizes

​​Classroom Alphabets

Center Signs

Word Search

Mother's Day

Father's Day

Circle The Shape

Alphabet Fun Shapes

Cursive Alphabet Trace

A TO Z WORKSHEET

A TO Z SMALL LETTERS

CVC Words Building

Write the First Letter of Given Picture

Circle the Correct Letter Worksheets

Circle the Cursive Letter Worksheets

Match the Letter with Correct Picture

Match the Picture with Cursive Letter

Matching Letters

Circle two pictures that begin with same letter sound

Circle two pictures that begin with same letter sound (Cursive)

CVC Worksheets Letter ‘a’

CVC Worksheets Letter ‘e’

CVC Worksheets Letter ‘i’

CVC Worksheets Letter ‘o’

CVC Worksheets Letter ‘u’

Look and write with vowels a, e, i, o, u

Opposite Words

2 Letter words - sight words

Literature.

Nursery Rhymes

Limericks

Cursive Alphabet Trace and Write

Letters A to G Upper and Lower Case Tracing Worksheet

Cute Phrases A-Z

Sight Words

Beginning Sounds. Kindergarten Worksheet

Cursive Writing Small Letters.

Capital Letters.

Small Letters.

Alphabet Trace.

Alphabet Trace and Write.

Alphabet Worksheet 

Consonant Vowel Consonant (CVC) Flashcards

Nursery Rhymes

Activities 

Princess Activities

Earth Day Activities

Witches and Wizards Activities

Animal Activities

Scissor Activities

Train Activities

Dinosaur Activities

Under the Sea Activities

Unicorn Activities

Transportation Activities

Space Activities

Color Activities

Alphabet Activities

Shape Activities

Reading Passages.

Reading Passages for Kids 

Story PDF.

White Magic Story

Sunshine and Reeva in China

The Little Red Hen

The Sun,Moon and Wind

The Arab and the Camel

The Tortoise and the Hare

The Lion and the Mouse

Goldilocks and the Three Bears

The Three Little Pigs

The Princess and the Pea

The Shepherd Boy and the Wolf

Rapunzel

The Goose and the Golden Eggs

The North Wind and the Sun

The Miser and his Gold

The Country Maid and her Milk Pail

Goodnight Moon

The Ugly Duckling

The Boy Who Cried Wolf

Cinderella

Two Cats and Clever Monkey

The Lion and the Rabbit

The Lion and the Mouse

Mathematics.

Trace Numbers 1 to 10

Classroom Numbers

Measuring Things

Additional Worksheet.

Additional Worksheet.

Additional Worksheet

Subtraction Worksheets

Same, Less, More

Count and Write Worksheets

Count and Match Worksheets

Count and Circle Worksheets

Fill in the Missing Number Worksheets

What Comes After & Between

Write Missing Numbers

Shape worksheets

Backward counting

Trace the numbers 1-10

Multiplication Sheet practice for Children

Counting practice from 1 to 100 Worksheet

Miscellaneous in Maths

Science.

Science

Science Activity Plans

Miscellaneous.

Animal Decorations

Classroom Decorations

Foldable Boxes

Teacher's Planner

Classroom Rules

Graduation Certificates

Placemats

UKG Worksheets 

Geography.

Geography

Weather

Calendar

Hindi

Hindi Alphabets. (Swar)

Hindi Alphabets. (Vanjan)

Colours name in Hindi | रंगों के नाम

Fruits name in Hindi | फलों के नाम

Vegetables name in Hindi | सब्जियों के नाम

Days in Hindi

Parts of Body

Hindi Swar Tracing Worksheets

Hindi Vyanjan Tracing Worksheets

Write the First Letter of picture - Hindi Swar Worksheets

Look and Match - Hindi Swar Worksheets

Circle the correct letter - Hindi Swar Worksheets

Write the first letter - Hindi Vyanjan Worksheets

Circle the Correct Letter - Vyanjan Worksheets

Choose the Right Image - Vyanjan Worksheets

Miscellaneous Hindi Worksheets

2 Letter Words Hindi Worksheets

3 Letter Words Hindi Worksheets

4 Letter Words Hindi Worksheets

AA (ा) – AA ki Matra | आ (ा) की मात्रा

i ( ि) - i ki Matra | इ ( ि) की मात्रा

EE ( ी) – EE ki Matra | ई ( ी) की मात्रा

U (ु) - U ki Matra | उ (ु) की मात्रा

O (ू ) – OO ki Matra | ऊ (ू) की मात्रा

E ( े) - E ki Matra | ए ( े ) की मात्रा

AI (ै) - AI ki Matra | ऐ (ै)की मात्रा

o ( ो) - o ki Matra | ओ (ो) की मात्रा

ou ( ौ) - ou ki Matra | औ ( ौ) की मात्रा

General Knowledge.

GK Worksheets

Animal Sounds

50 Mazes

Preschool Assessment

Nursery GK Worksheet

Creative Worksheets

Social Skills

Feelings

People at Work

Finger Puppets

Shapes

Good Or Bad

Things That Go Together

Things That Do Not Belong

Match the following.

Match the fruit to its shadow. [5 Pages]

Match Letters [35 Pages]

Matching Worksheets

Sorting Worksheet

Shadow Matching

Match the uppercase letter to its lowercase [6 Pages]

Circle 2 Matching Pictures

Games.

Cut and Paste

Matching Cards

Puzzles and Mazes

Spot the Differences

Freak - Out !!!

Freak - Out !!! 

Sudoku

Cut and Glue

This Week

Coloring.

Coloring for Fun

100 Pages to Color

100 Animals to Color

100 Bracelets

Dot to Dot

Color Cute Dinosaurs

Color Cute Animals

Alphabet Coloring

Alphabet Sentences

Alphabet Coloring.

Coloring Images

Colors

Drawing

Circle the Color

English Alphabet Color it. 

English Alphabet Color it and Match it with Pictures

Alphabet Color it. [26 Pages]

Alphabet Color it 2. [7 Pages]

English Alphabet Color it. 

Numbers PDF.

Numbers 1 to 10 Color it. [2 Pages]

1 to 10 Numbers Coloring. [4 Pages]

Flash Cards PDF.

Plant Flashcards

Letters and Numbers

Tell the Time Flash Cards [6 Pages]

​​Reward Cards

Posters

Animal Flashcards

Name Cards

Happy Birthday

Flashcards English vocabulary [12 Pages]

Alphabet Letters with Pictures [5 Pages]

Numbers Flash Cards. [5 Pages]

Shapes FlashCards. [4 Pages]

Colors FlashCards. [3 Pages]

English Alphabet Learning Flash Cards. [26 Pages]

Alphabet Flashcards. [26 Pages]

Alphabet Identification Flash Cards. [26 Pages]

….

Addition

Addition Worksheet. [5 Pages] (V.1-5)

Addition Worksheet. [5 Pages] (V.1-5)

Addition Worksheet. [36 Pages] (V.1-5)

Additional Worksheet. 

Subtraction

Subtracting by Pictures [5 Pages] (V.1-5)

Subtracting by Numbers [5 Pages] (V.1-5)

Subtracting by Pictures and Numbers [5 Pages] (V.1-5)

Subtract and circle the correct number [5 Pages] (V.1-5)

General Knowledge.

Fruits [6 Pages] (V.5)

Vegetables [6 Pages] (V.5)

Positions [7 Pages] (V.5)

Colors [10 Pages] (V.5)

Match the following.

Match the fruit to its shadow. [5 Pages] (V.1-5)

Match Letters [35 Pages] (V.1-5)

Match the uppercase letter to its lowercase [6 Pages] (V.1-5)

Mathematics.

Count and Write Worksheets

Count and Match Worksheets

Fill in the Missing Number Worksheets

Trace the numbers 1-10.

Multiplication Sheet practice for Children [14 Pages] (V.1-5)

Counting practice from 1 to 100 Kindergarten Math Worksheet

Games.

Freak - Out !!! [10 pages] (V.5)

Freak - Out !!! [10 pages] (V.5)

Literature.

Nursery Rhymes

Cursive Alphabet Trace and Write [26 Pages] (V.1-5)

Letters A to G Upper and Lower Case Tracing Worksheet

Beginning Sounds. Kindergarten Worksheet

Cursive Writing Small Letters. [7 Pages] (V.1-5)

Capital Letters. [26 Pages] (V.1-5)

Small Letters. [26 Pages] (V.1-5)
Alphabet Trace. [9 Pages] (V.1-5)

Alphabet Trace and Write. [26 Pages] (V.1-5)

Alphabet Worksheet [26 Pages] (V.1-5)

Consonant Vowel Consonant (CVC) Flashcards [33 Pages] (V.1-5)

Hindi PDF Download.

Hindi Alphabets. (Swar) [13 Pages] (V.1-5)

Hindi Alphabets. (Vanjan) [34 Pages] (V.1-5)

Story PDF Download.

Two Cats and Clever Monkey [5 pages] (V.1-5)

The Lion and the Rabbit [4 Pages] (V.1-5)

The Lion and the Mouse [2 Pages] (V.1-5)

Reading Passages PDF Download.

Reading Passages for Kids [5 Pages] (V.1-5)

Coloring PDF Download.

Alphabet Coloring. [26 Pages] (V.1-5)

Coloring Images. [12 Pages] 

English Alphabet Color it. [5 Pages] (V.1-5)

English Alphabet Color it and Match it with Pictures. [5 Pages] (V.1-5)

Alphabet Color it. [26 Pages] (V.1-5)

Alphabet Color it 2. [7 Pages] (V.1-5)

English Alphabet Color it. 2 [5 Pages] (V.1-5)

Numbers PDF Download.

Numbers 1 to 10 Color it. [2 Pages] (V.1-5)

1 to 10 Numbers Coloring. [4 Pages] (V.1-5)

Flash Cards PDF Download.

Tell the Time Flash Cards [6 Pages] (V.5)

Flashcards English vocabulary [12 Pages] (V.5)

Alphabet Letters with Pictures [5 Pages] (V.5)

Numbers Flash Cards. [5 Pages] (V.1-5)

Shapes FlashCards. [4 Pages] (V.1-5)

Colors FlashCards. [3 Pages] (V.1-5)

English Alphabet Learning Flash Cards. [26 Pages] (V.1-5)

Alphabet Flashcards. [26 Pages] (V.1-5)

Alphabet Identification Flash Cards. [26 Pages] (V.1-5)


Top queries

a for apple b for ball pdf,

a for apple pdf,

a for apple b for ball book pdf,

a for apple b for ball pictures pdf,

a for apple b for ball worksheet pdf,

a for apple b for ball,

a for apple pdf download,

a for apple b for ball chart pdf,

a for apple b for ball image,

a for apple coloring,

b for ball coloring page,

a for apple chart pdf download,

a for apple printable,

b for ball,

alphabet with pictures pdf download,

printable a for apple b for ball,

a for apple b for ball picture,

छोटे बच्चों की गिनती,

english letter picture,

b for ball images,

a for apple chart pdf,

english alphabet with pictures pdf,

a for apple b for ball photo,

ए फॉर एप्पल बी फॉर बॉल,

a for apple b for ball images download,

a for apple b for ball images,

a for apple b for,

a for apple images,

apple b for ball,

for apple b for ball,

बी फॉर बॉल,

apple b for,

picture of alphabet,

बच्चों की पढ़ाई गिनती,

a for apple a for ball,

एप्पल बी फॉर बॉल,

letter a apple worksheet,

ए फॉर एप्पल,

a for apple b for ball worksheet,

a for apple books,

a for apple b for ball chart pdf download,

printable b for ball,

b for ball picture,

printable a for apple,

english alphabet pdf kids

11,000+ Printable Activity Worksheets Bundle

Alphabet tracing sheets

Math worksheets

Shape recognition exercises

Animal-themed activities

Scissor cutting practice

Flash Cards

Seasonal and holiday printable

And so much more!

Is it a digital product or Physical Product ?

11000+ Printable Activity Worksheets PDF is a digital products.

We are always happy to see our products helping you to accomplish your goals. 

.