Advertisement

If [2a+b3a-bc+2d2c-d]=[234-1], find a, b, c and d.

Exercise 2.2 | Q 14 | Page 47

QUESTION

If [2a+b3a-bc+2d2c-d]=[234-1], find a, b, c and d.

SOLUTION

[2a+b3a-bc+2d2c-d]=[234-1]

∴ By  equality of matrices, we get
2a + b = 2        ....(i)
3a – b = 3        ....(ii)
c + 2d = 4       ....(iii)
2c –d = – 1      ....(iv)
Adding (i) and (ii), we get
5a = 5
∴ a = 1
Substituting a = 1 in (i), we get
2(1) + b = 2
∴ b = 0
By (iii) + (iv) x 2, we get
5c = 2

∴ c = 25
Substituting c = 25 i (iii), we get

25+2d = 4

∴ 2d = 4-25

∴ 2d = 185

∴ d = 95.