EXERCISE 1.9PAGE 22
Balbharati solutions for Mathematics and Statistics 1 (Commerce) 12th Standard HSC Maharashtra State Board Chapter 1 Mathematical Logic Exercise 1.9 [Page 22]
Without using truth table, show that
p ↔ q ≡ (p ∧ q) ∨ (~p ∧ ~q)
SOLUTION
L.H.S.
≡ p ↔ q
≡ (p → q) ∧ (q → p)
≡ (~p ∨ q) ∧ (~q ∨ p)
≡ [~ p ∧ (~ q ∨ p)] ∨ [q ∧ (~ q ∨ p)] ....[Distributive law]
≡ [(~ p ∧ ~ q) ∨ (~ p ∧ p)] ∨ [(q ∧ ~ q) ∨ (q ∧ p)] .....[Distributive Law]
≡ [(~ p ∧ ~ q) ∨ F] ∨ [F ∨ (q ∧ p)] ....[Complement Law]
≡ (~ p ∧ ~ q) ∨ (q ∧ p) ....[Identity Law]
≡ (p ∧ q) ∨ (~ p ∧ ~ q) ....[Commutative Law]
≡ R.H.S.
Without using truth table, show that
p ∧ [(~ p ∨ q) ∨ ~ q] ≡ p
SOLUTION
L.H.S.
≡ p ∧ [(~ p ∨ q) ∨ ~ q]
≡ p ∧ [(~ p ∨ (q ∨ ~ q)] .....[Associative law]
≡ p ∧ (~ p ∨ T) .....[Complement law]
≡ p ∧ T .....[Identity law]
≡ p .....[Identity law]
≡ R.H.S.
Without using truth table, show that
~ [(p ∧ q) → ~ q] ≡ p ∧ q
SOLUTION
L.H.S.
≡ ~ [(p ∧ q) → ~ q]
≡ (p ∧ q) ∧ ~ (~ q) ....[Negation of implication]
≡ (p ∧ q) ∧ q .....[Negation of a negation]
≡ p ∧ (q ∧ q) ....[Associative law]
≡ p ∧ q .....[Identity law]
≡ R.H.S.
Without using truth table, show that
~r → ~ (p ∧ q) ≡ [~ (q → r)] → ~ p
SOLUTION
L.H.S.
≡ ~r → ~ (p ∧ q)
≡ ~(~ r) ∨ ~ (p ∧ q) ....[p → q ≡ ~ p ∨ q]
≡ r ∨ ~(p ∧ q) ....[Negation of negation]
≡ r ∨ (~p ∨ ~q) ....[De Morgan’s law]
≡ ~p ∨ (~q ∨ r) .....[Commutative and associative law]
≡ ~p ∨ (q → r) ....[p → q ≡ ~ p ∨ q]
≡ (q → r) ∨ ~p ......[Commutative law]
≡ ~[~ (q → r)] ∨ ~ p ......[Negation of negation]
≡ [~ (q → r)] → ~ p .....[p → q ≡ ~ p ∨ q]
= R.H.S.
Without using truth table, show that
(p ∨ q) → r ≡ (p → r) ∧ (q → r)
SOLUTION
L.H.S.
≡ (p ∨ q) → r
≡ ~ (p ∨ q) ∨ r ....[p → q → ~ p ∨ q]
≡ (~ p ∧ ~ q) ∨ r ....[De Morgan’s law]
≡ (~ p ∨ r) ∧ (~ q ∨ r) .....[Distributive law]
≡ (p → r) ∧ (q → r) .....[p → q → ~ p ∨ q]
= R.H.S.
Using the algebra of statement, prove that
[p ∧ (q ∨ r)] ∨ [~ r ∧ ~ q ∧ p] ≡ p
SOLUTION
L.H.S.
= [p ∧ (q ∨ r)] ∨ [~ r ∧ ~ q ∧ p]
≡ [p ∧ (q ∨ r)] ∨ [(~ r ∧ ~ q)∧ p] ...[Associative Law]
≡ [p ∧ (q ∨ r)] ∨ [(~q ∧ ~r) ∧ p] ....[Commutative Law]
≡ [p ∧ (q ∨ r)] ∨ [~ (q ∨ r) ∧ p] ....[De Morgan’s Law]
≡ [p ∧ (q ∨ r)] ∨ [p ∧ ~(q ∨ r)] .....[Commutative Law]
≡ p ∧ [(q ∨ r) ∨ ~(q ∨ r)] ....[Distributive Law]
≡ p ∧ t ......[Complement Law]
≡ p .....[Identity Law]
= R.H.S.
Using the algebra of statement, prove that
(p ∧ q) ∨ (p ∧ ~ q) ∨ (~ p ∧ ~ q) ≡ (p ∨ ~ q)
SOLUTION
L.H.S.
= (p ∧ q) ∨ (p ∧ ~ q) ∨ (~ p ∧ ~ q)
≡ (p ∧ q) ∨ [(p ∧ ~ q) ∨ (~ p ∧ ~ q)] ....[Associative Law]
≡ (p ∧ q) ∨ [(~q ∧ p) ∨ (~ q ∧ ~ p)] ....[Commutative Law]
≡ (p ∧ q) ∨ [~q ∧ (p ∨ ~ p)] ....[Distributive Law]
≡ (p ∧ q) ∨ (~q ∧ t) .....[Complement Law]
≡ (p ∧ q) ∨ (~q) .....[Identity Law]
≡ (p ∨ ~ q) ∧ (q ∨ ~q) .....[Distributive Law]
≡ (p ∨ ~ q) ∧ t ....[Complement Law]
≡ p ∨ ~ q .....[Identity Law]
= R.H.S.
Using the algebra of statement, prove that
SOLUTION
(p ∨ q) ∧ (~ p ∨ ~ q) ≡ (p ∧ ~ q) ∨ (~ p ∧ q)
L.H.S.
= (p ∨ q) ∧ (~ p ∨ ~ q)
≡ [(p ∨ q) ∧ ~ p] ∨ [(p ∨ q) ∧ ~ q] .....[Distributive law]
≡ [(p ∧ ~ p) ∨ (q ∧ ~ p)] ∨ [(p ∧ ~ q) ∨ (q ∧ ~ q)] .....[Distributive law]
≡ [F ∨ (q ∧ ~p)] ∨ [(p ∧ ~ q) ∨ F] .....[Complement law]
≡ (q ∧ ~p) ∨ (p ∧ ~ q) .....[Identity law]
≡ (p ∧ ~ q) ∨ (~ p ∧ q) ....[Commutative law]
= R.H.S.