Advertisement

Exercise 2.3 [Pages 55 - 56] Balbharati solutions for Mathematics and Statistics 1 (Commerce) 12th Standard HSC Maharashtra State Board Chapter 2 Matrices.

Exercise 2.3 [Pages 55 - 56]

Balbharati solutions for Mathematics and Statistics 1 (Commerce) 12th Standard HSC Maharashtra State Board Chapter 2 Matrices Exercise 2.3 [Pages 55 - 56]

QUESTION

Exercise 2.3 | Q 1.1 | Page 55

Evaluate : [321][2 -4  3]

SOLUTION

[321][2 -4  3]

= [3(2)3(-4)3(3)2(2)2(-4)2(3)1(2)1(-4)1(3)]

= [61294862-43].


QUESTION

Exercise 2.3 | Q 1.2 | Page 55

Evaluate : [2-1  3][431]

SOLUTION

[2-1  3][431]

= [2(4) –1(3) + 3(1)]
= [8 – 3 + 3]
= [8].


QUESTION

Exercise 2.3 | Q 2 | Page 55

If A = [-1112301-31],B=[214302121], state whether AB = BA? Justify your answer.

SOLUTION

AB = [-1112301-31][214302121]

= [-2+3+1-1+0+2-4+2+14+9+02+0+08+6+02-9+11+0+24-6+1]

∴ AB = [21-113214-63-1]     ...(i)

BA = [214302121][-1112301-31]

= [-2+2+42+3-122+0+4-3+0+23+0-63+0+2-1+4+11+6-31+0+1]

∴ BA = [4-76-1-35442]      ...(ii)
From (i) and (ii), we get
AB ≠ BA.


QUESTION

Exercise 2.3 | Q 3 | Page 55

Show that AB = BA, where A = [-23-1-12-1-69-4],B=[13-122-130-1].

SOLUTION

AB = [-23-1-12-1-69-4][13-122-130-1]

= [-2+6-3-6+6-02-3+1-1+4-3-3+4-01-2+1-6+18-12-18+18+06-9+4]

∴ AB = [100010001]         ...(i)

BA = [13-122-130-1][-23-1-12-1-69-4]

= [2-3+63+6-9-1-3+4-4-2+66+4-9-2-2+4-6+0+69+0-93+0+4]

∴ BA = [100010001]       ...(ii)

From (i) and (ii), we get
AB = BA.


QUESTION

Exercise 2.3 | Q 4 | Page 55

Verify A(BC) = (AB)C, if A = [101230045],B=[2-2-1103]

SOLUTION

BC = [2-2-1103][32-120-2]

= [6-44-0-2+4-3+2-2+01-20+60+00-6]

= [24212-160-6]

∴ A(BC) = [101230045][242-1-2-160-6]

= [2-0+64-0+02-0-64-3+08-6+04-3-00-4+300-8+00-4-30]

∴ A(BC) = [84-412126-8-34]     ...(i)

AB = [101230045][2-2-1103]

= [2+0+0-2+0+34-3+0-4+3+00-4+00+4+15]

= [211-1-419]

∴ (AB)C = [211-1-419][32-120-2]

= [6+24+0-2-23-22-0-1+2-12+38-8+04-38]

∴ (AB)C = [84-412126-834]       ...(ii)

From (i) and (ii), we get
A(BC) = (AB)C.


QUESTION

Exercise 2.3 | Q 5 | Page 55

Verify that A(B + C) = AB + AC, if A = [4-223],B=[-113-2]and C=[412-1].

SOLUTION

A(B + C) = [4-223]{[-113-2]+[412-1]}

= [4-223][-1+41+13+2-2-1]

= [4-223][325-3]

= [12-108+66+154-9]

= [21421-5]          ...(i)

AB + AC = [4-223][-113-2]+[4-223][412-1]

= [-4-64+4-2+92-6]+[16-44+28+62-3]

= [-1087-4]+[12614-1]

= [-10+128+67+14-4-1]

= [21421-5]       ...(ii)
From (i) and (ii),  we get
A(B + C) = AB + AC.


QUESTION

Exercise 2.3 | Q 6 | Page 56

If  A = [432-120],B=[12-101-2] show that matrix AB is non singular.

SOLUTION

AB = [432-120][12-101-2] 

= [4-3+28+0-4-1-2+0-2+0+0]

= [34-3-2]

∴ |AB| = |34-3-2|

= – 6 + 12
= 6 ≠ 0
∴ AB is a non-singular matrix.


QUESTION

Exercise 2.3 | Q 7 | Page 56

If A + I = [12054207-3], find the product (A + I)(A − I).

SOLUTION

A − I = A I − 2I
= [12054207-3]-2[100010001]

= [12054207-3][200020002]

= [1-22-00-05-04-22-00-07-0-3-2]

= [-12052207-5]

(A + I)(A − I) = [12054207-3][-12052207-5]

= [-1+10+02+4+00+4+0-5+20+010+8+140+8-100+35-00+14-210+14+15]

 [9641532235-729].


QUESTION

Exercise 2.3 | Q 8 | Page 56

If A = [122212221], show that A2 – 4A is a scalar matrix.

SOLUTION

A2 – 4A = A.A – 4A
= [122212221][122212221]-4[122212221]

= [1+4+42+2+42+4+22+2+44+1+44+2+22+4+24+2+24+4+1]-[488848884]

= [988898889]-[488848884]

= [9-48-88-88-89-48-88-88-89-4]

= [500050005], which is a scalar martix.


QUESTION

Exercise 2.3 | Q 9 | Page 56

If A = [10-17], find k so that A2 – 8A – kI = O, where I is a 2 × 2 unit and O is null matrix of order 2.

SOLUTION

A2 – 8A – kI = O
∴ A.A 8A – kI = O

 [10-17][10-17]-8[10-17]-k[1001]=[0000]

 [1+00+0-1 70+49]- [80-856]-[k00k]=[0000]

 [10-849]-[80-856]-[k00k]=[0000]

 [1-8-k0-0-0-8+8-04-6-k]=[0000]

∴ By equality of matrices, we get
1 – 8 – k = 0
∴ k = – 7.


QUESTION

Exercise 2.3 | Q 10 | Page 56

If A = [31-12], prove that A2 – 5A + 7I = 0, where I is a 2 x 2 unit matrix.

SOLUTION

A2 – 5A + 7I = A.A – 5A + 7I 

= [31-12][31-12]5[31-12]+7[1001]

= [9-13+2-3-2-1+4] [155-510]+[7007]

= [85-53]-[155-510]+[7007]

= [8-15+75-5+0-5+5+03-10+7]

= [0000]

= 0.


QUESTION

Exercise 2.3 | Q 11 | Page 56

If A = [12-1-2],B=[2a-1b] and (A + B)2  A2 + B2, find the values of a and b.

SOLUTION

Given (A + B)2  A2 + B2 
∴ A2 + AB + BA + B2 = A2 + B2
∴ AB + BA = 0
∴ AB = – BA

 [12-12][2a-1b] =-[2a-1b][12-1-2]

 [2-2a+2b-2+2-a-2b]=-[2-a4-2a-1-b-2-2b]

 [0a+2b0-a-2b]=[-2+a-4+2a1+b2+2b]

∴ By equality of matrices, we get
– 2 + a = 0 and 1 + b = 0
∴ a = 2 and b = – 1.


QUESTION

Exercise 2.3 | Q 12 | Page 56

Find k, if A = [3-24-2] and A2 = kA – 2I.

SOLUTION

A2 = kA – 2I
∴ A.A + 2I = kA

 [3-24-2][3-24-2]+2[1001]=k[3-24-2]

 [9-8-6+412-8-8+4]+[2002]=[3k-2k4k-2k]

 [1-24-4]+[2002]=[3k-2k4k-2k]

 [1+2-2+04+0-4+2]=[3k-2k4k-2k]

 [3-24-2]=[3k-2k4k-2k]

∴ By equality of matrices, we get
3k = 3
∴ k = 1.


QUESTION

Exercise 2.3 | Q 13 | Page 56

Find x and y, if {4[2-13102]-[3-34211]}[2-11]=[xy]

SOLUTION

{4[2-13102]-[3-34211]}[2-11]=[xy]

 {[8-412408]-[3-34211]}[2-11]=[xy]

 [8-3-4+312-44-20-18-1][2-11]=[xy]

 [5-182-17][2-11]=[xy]

 [10+1+84+1+7]=[xy]

 [1912]=[xy]

∴ By equality of matrices, we get
x = 19 and y = 12.


QUESTION

Exercise 2.3 | Q 14 | Page 56

Find x, y, x, if {3[200222]-4[11-1231]}[12]=[x-3y-12z].

SOLUTION

{3[200222]-4[11-1231]}[12]=[x-3y-12z]

 {[600666]-[44-48124]}[12]=[x-3y-12z]

 [6-40-40+46-86-126-4][12]=[x-3y-12z]

 [2-44-2-62][12]=[x-3y-12z]

 [2-84-4-6+4]=[x-3y-12z]

 [-60-2]=[x-3y-12z]

∴ By equality of martices, we get
x – 3 = – 6, y – 1  = 0, 2z = – 2
∴ x = – 3, y = 1, z = – 1.


QUESTION

Exercise 2.3 | Q 15 | Page 56

Jay and Ram are two friends. Jay wants to buy 4 pens and 8 notebooks, Ram wants to buy 5 pens and 12 notebooks. The price of one pen and one notebook was ₹ 6 and ₹ 10 respectively. Using matrix multiplication, find the amount each one of them requires for buying the pens and notebooks.

SOLUTION

Let A be the matrix of pens and notebooks and B be the matrix od prices of one pen and one notebook.
Pens Notebooks
∴ A = [48512]jayRam

and B = [610]PenNotebook

The total amount required for each one of them is obtained by matrix AB.

∴ AB = [48512][610]

= [24+8030+120]

= [104150]
∴ Jay needs ₹ 104 and Ram needs ₹ 150.